fusilli.fusionmodels.tabularfusion๏ƒ

Collection of fusion models for tabular-tabular fusion.

Modules

fusilli.fusionmodels.tabularfusion.activation

Activation-function fusion model for tabular data.

fusilli.fusionmodels.tabularfusion.attention_and_activation

Using activation functions to fuse tabular data, with self-attention on the second tabular modality.

fusilli.fusionmodels.tabularfusion.attention_weighted_GNN

Attention weighted GNN model: the edge weights are the attention weights from a pre-trained MLP and the node features are the second modality.

fusilli.fusionmodels.tabularfusion.channelwise_att

Channel-wise multiplication fusion model for tabular data.

fusilli.fusionmodels.tabularfusion.concat_data

Concatenating the two tabular modalities at the data-level (early fusion)

fusilli.fusionmodels.tabularfusion.concat_feature_maps

Concatenating the feature maps of the two tabular modalities.

fusilli.fusionmodels.tabularfusion.crossmodal_att

Crossmodal multi-head attention for tabular data.

fusilli.fusionmodels.tabularfusion.decision

Decision fusion of two types of tabular data.

fusilli.fusionmodels.tabularfusion.edge_corr_gnn

Edge correlation GNN model: edges are weighted by the correlation between the nodes' first tabular modality features.

fusilli.fusionmodels.tabularfusion.mcvae_model

This module implements the MCVAE (multi-channel variational autoencoder) model for fusing two types of tabular data.